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a b s t r a c t

This article reports a new ‘‘one-step’’ synthesis of graft polymers based on the radical/cationic trans-
formation polymerization. Using the synthetic method proposed, a graft polymer (PVAc-g-[P(AN-r-BVE)-
b-PCHO]) consisting of a partly hydrolyzed poly(vinyl acetate) (PVAc-OH) backbone and block polymer
grafts of acrylonitrile/n-butyl vinyl ether random copolymer (P(AN-r-BVE)) and poly(cyclohexene oxide)
(PCHO) was synthesized in situ by radical/cationic transformation polymerization of a mixture of AN/
BVE/CHO in the presence of PVAc-OH. The graft polymer, PVAc-g-[P(AN-r-BVE)-b-PCHO], was fully
characterized by 1H NMR, IR, gel permeation chromatography and differential scanning calorimetry. The
graft polymer, PVAc-g-[P(AN-r-BVE)-b-PCHO], was hydrolyzed with NaOH to form a poly(vinyl alcohol)-
based amphiphilic graft polymer, PVA-g-[P(AN-r-BVE)-b-PCHO]. The aggregation behavior of the
amphiphilic graft polymer was investigated briefly by atomic force microscopy and dynamic light
scattering measurements.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Graft polymers have been widely used as macromolecular
materials such as surfactants in composite materials [1–5] and drug
delivery system [6,7] because of their unique properties due to
modifications of linear conventional polymers. Thus, there have
been a number of papers on synthesis of graft polymers [8–11].
Especially, recent developments of living polymerization tech-
niques have expanded the type of monomers to be employed for
the synthesis of graft polymers [12–15]. Syntheses of graft poly-
mers are mainly classified into the following three methods:
‘‘grafting-through’’ [16–18], ‘‘grafting-from’’ [19–21] and ‘‘grafting-
to’’ [22–24] methods. These methods generally require multiple
steps.

Apart from living polymerization techniques, syntheses of new
types of block polymers with well-designed architecture have been
challenged from the points of new development of conventional
polymers. Radical promoted cationic polymerization and trans-
formation polymerization have been performed as ways to get
block polymers [25–29].
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We have independently synthesized several block copolymers by
radical/cationic transformation polymerization in the extension of
ESR study on radical polymerization [30–33]. In radical/cationic
transformation polymerization, (1) monomer A is first polymerized
by radical mechanism, (2) an electron transfers from the propagating
radical of polymer of monomer A to an electron acceptor to form the
corresponding polymeric cation, and (3) the polymeric cation initi-
ates cationic polymerization of monomer B. Radical/cationic trans-
formation polymerization allows one to synthesize unique block
copolymers composed of blocks of poly(vinyl monomers) and poly-
(ethers). If the propagating cations coupled with a linear polymer in
situ, graft polymers would be formed in ‘‘one-step’’.

In this study, we employed block polymer of acrylonitrile/n-
butyl vinyl ether random copolymer (P(AN-r-BVE)) and poly-
(cyclohexene oxide) (PCHO) as grafts and a partly hydrolyzed
poly(vinyl acetate) (PVAc-OH) as the polymer backbone because
the grafts with three different monomer units can modify the
thermo-property and amphiphilic property of PVAc at a very wide
range. This article reports a new ‘‘one-step’’ synthesis of a graft
polymer, PVAc-g-[P(AN-r-BVE)-b-PCHO], based on radical/cationic
transformation polymerization of a mixture of AN/BVE/CHO in the
presence of PVAc-OH (Scheme 1). Furthermore, the graft polymer
obtained is hydrolyzed to form a poly(vinyl alcohol)-based
amphiphilic graft polymer and its aggregation behavior is also
described.
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Scheme 1. Schematic representation for the radical/cationic transformation poly-
merization and the coupling reaction with PVAc-OH to form the graft polymers.

Insoluble fraction Soluble fraction 

Precipitated at hexane 

Polymer solution of run.5 in Table 1

Precipitate Supernatant liquor

Part B 0.29g (76%), Unit ratio of
AN: BVE: CHO: PVAc-OH

1.2: 1.0: 1.5: 0.9  

Part A 0.06g (15%), Unit ratio of
AN: BVE: CHO: PVAc-OH

1.0 : 1.0 : 6.3 : 0  

Part C 0.03g (7%), Unit ratio of
AN: BVE: CHO: PVAc-OH

0 : 0 : 0 : 1.0 

Precipitated at hexane

Dissolved in THF 
Precipitated at  

MeOH/Water 
5:4 (v/v) 

Precipitated at MeOH 

Fig. 1. Separation procedure for the graft copolymers.
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2. Experimental section

2.1. Materials

Commercially available 2,20-azobis(isobutyronitrile) (AIBN) was
purified by recrystallization from methanol. Diphenyliodonium
hexafluorophosphate (Ph2IPF6) (Sigma–Aldrich Chemical Co.) was
used without further purification. Commercially available acrylo-
nitrile (AN), dichloroethane, n-butyl vinyl ether (BVE) and cyclo-
hexene oxide (CHO) (Acros Chemical Co.) were dried over calcium
hydride, and distilled under reduced pressure prior to use. A partly
hydrolyzed poly(vinyl acetate) (PVAc-OH), whose degrees of poly-
merization and hydrolysis were 220 and 16%, respectively, was
provided by Kuraray Company.
2.2. Synthesis of a graft polymer

A dichloroethane solution of a given amount of AIBN, Ph2IPF6,
monomers and a partly hydrolyzed PVAc in a glass ampoule was
degassed by three freeze–thaw–pump cycles. The ampoule was
sealed under high vacuum, and kept at a predetermined tempera-
ture in the dark. After predetermined time, the ampoule was
opened and then the content was poured into an excess of hexane
to give a precipitate. The precipitate was further purified to obtain
the graft copolymers. An example for the synthesis is given in Table
1 and the separation procedure is shown in Fig. 1.

The polymer solution of run 5 in Table 1 was added to 25 mL of
hexane to give a white precipitate. The precipitate was separated by
centrifugation. The supernatant liquor was concentrated, resolved
in THF and poured into excess of methanol to give a polymer of Part
A containing no PVAc-OH. The precipitate in hexane was resolved
in THF and poured into 25 mL of a mixture of methanol/water (5/4,
Table 1
Radical/cationic transformation polymerizations of AN/BVE/CHO and coupling reaction o

Run AIBN, mM Ph2IPF6, mM PVAc-OH, g/2 mL Yield,a % Mn, 104 Mw/M

1 12 0 0 44 2.6 –
2 12 0 0.1 47 – –
3 12 24 0 28c 2.1 2.0
4 0 24 0.1 3.0 – –
5 12 24 0.1 44c 4.2d 2.1

The concentrations of AN, BVE, and CHO were fixed at 0.6, 1.5, and 2.5 M, respectively. The
by precipitation using methanol. PVAc-OH is soluble in methanol.

a The yield of the polymers of different runs are calculated as following: Run 1 and Run
and 4 are based on the total weight of AN, BVE and CHO (radical and cationic polymeriz

b Determined by NMR.
c The polymers were recovered by precipitation using hexane.
d Part B in Fig. 1.
v/v). The insoluble fraction was dried and characterized as the graft
polymers (Part B) in 76% (w) of the total polymers of run 5. The
soluble fraction was concentrated to give Part C that was repreci-
pitated from 1,2-dichloroethane and n-hexane system.

2.3. Hydrolysis of the graft polymer

The graft polymer obtained (0.2 g) was dissolved in tetrahy-
drofuran (THF) (10 mL). A solution of NaOH in methanol (10%, 2 mL)
was added to the solution. The reaction mixture was stirred and
warmed at 50 �C. After 2 h, the graft polymer was recovered by
precipitation using methanol with 95% yield.

2.4. Characterizations

1H NMR spectra were measured on a Varian 300M spectrom-
eter. Gel permeation chromatography (GPC) measurements were
made on a Waters system, which consisted of a Water 515 HPLC
pump, a Water 2410 refractive index detector, and Water styragel
HT2, HT3, and HT4 columns connected in a series, using THF as
eluent at a flow rate of 1.0 mL/min. Molecular weights were cali-
brated by polystyrene standards (water company standard
product). FT-IR measurements were performed using a Magna-IR
750 (Nicolet Company, American) by the microscope-infrared
spectroscopy method. DSC spectra for the polymers were
measured on a Dupont 1090B, at a heating rate of 10 �C/min under
a slow stream of nitrogen (Fig. 2). Light scattering measurements
were performed using an ALV/CGS-5022F (ALV/Laser Ver-
triebsgesellschaft m.b.H Company, Germany) apparatus at
25.00� 0.01 �C, consisting of an automatic goniometer table and
f the end cations of the block polymers with PVAc-OH.

n, 104 Comonomer unit ratio in the polymer obtainedb (AN:BVE:CHO:PVAc-OH)

1.3:1.0:0.0:0.0
1.2:1.0:0.0:0.0
1.2:1.0:1.4:0.0
0.0:0.1:1.0:0.0
1.2:1.0:1.5:0.90d

polymerization was carried out at 80 �C for 4 h. The polymer obtained was recovered

2 are based on the total weight of AN and BVE (radical polymerization only); Runs 3
ation); Run 5 is based on the total weight of AN, BVE, CHO and PVAc-OH.



Fig. 2. DSC spectra for the polymers measured at a heating rate of 10 �C/min under a slow stream of nitrogen.
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a helium–neon laser (632.8 nm, 22 mW). The scattering angle was
fixed at 90�. Atomic force microscopy (AFM) measurements were
performed on an SPI3800N/SPA-400 (SII Co. Japan) operating in the
direct force microscope (DFM) mode. Samples for AFM were
prepared as follows: Graft polymers were dissolved in a mixed
solvent of DMSO/THF (1/5, v/v) at a concentration of 0.2 mg/mL. A
few drops of the solution were put on a substrate of mica and then
the solvent was evaporated at room temperature.
3. Results and discussion

3.1. Synthesis of a graft polymer

Table 1 indicates the conditions and result of synthesis of a graft
polymer, PVAc-g-[P(AN-r-VBE)-b-PCHO], by radical/cationic trans-
formation polymerization and coupling reaction. This table also
contains conditions and results of reference systems. Run 1 in Table 1
indicates that polymerization of a mixture of AN/BVE/CHO initiated
by AIBN yielded a statistical copolymer of AN and BVE (P(AN-r-BVE))
with a comonomer unit ratio of AN:BVE¼ 1.3:1.0, indicating that
CHO was not polymerized radically and did not practically disturb
the radical copolymerization of AN and BVE. As can be seen in run 2,
polymerization of a mixture of AN/BVE/CHO initiated by AIBN in the
presence of PVAc-OH also yielded P(AN-r-BVE). Comparing the
yields and the comonomer unit ratios for runs 1 and 2, it is concluded
that PVAc-OH exhibited no or only a little effect on the radical
copolymerization of AN and BVE. This observation indicates that any
propagating radicals of P(AN-r-BVE) do not couple with PVAc-OH.
Run 3 represents polymerization of a mixture of AN/BVE/CHO initi-
ated by AIBN in the presence of Ph2IPF6, which is a typical example of
radical/cationic transformation polymerization. This polymerization
Table 2
Glass transition temperatures (Tg or Tg1, and Tg2) and melting points (Tm) of the
polymers obtained.

Polymer Tg or Tg1, �C Tg2, �C Tm, �C

P(AN-r-BVE) 10 – –
PCHO 70 – –
P(AN-r-BVE)-b-PCHO 34 – –
PVAc-OH 39 – –
PVAc-g-[P(AN-r-BVE)-b-PCHO] 26 43 –
P(AN-r-BVE)-b-PCHO/PVAc-OH blend 36 – –
PVA-g-[P(AN-r-BVE)-b-PCHO] 37 94 179
P(AN-r-BVE)-b-PCHO/PVA blend 34 76 228
yielded a block copolymer of P(AN-r-BVE) and poly(CHO) (P(AN-r-
BVE)-b-PCHO) with a comonomer ratio of AN:BVE:CHO¼ 1.2:1.0:1.4.
Run 4 indicates that only a very low yield (3.0%) of polymer was
obtained from a mixture of AN/BVE/CHO in the presence of Ph2IPF6.
This observation confirms that AIBN, a radical initiator, is necessary
for the formation of P(AN-r-BVE)-b-PCHO. As reported previously
[31,32], carbon radicals carrying electron-donating groups undergo
electron transfer to Ph2IPF6 to form the corresponding cations
whereas carbon radicals carrying electron-withdrawing groups (e.g.,
the radical derived from AIBN and PAN propagating radical) do not.
In run 3, electron transfer occurs from P(AN-r-BVE) propagating
radicals bearing BVE unit at the terminal to Ph2IPF6 to form the
corresponding polymeric cations which initiate cationic polymeri-
zation of CHO, resulting in the formation of P(AN-r-BVE)-b-PCHO.
Run 5 indicates that radical/cationic transformation polymerization
of AN/BVE/CHO in the presence of PVAc-OH yielded a polymer of
a comonomer unit ratio of AN/BVE/CHO/VAc¼ 1.2:1.0:1.5:0.90. Since
P(AN-r-BVE) propagating radical does not couple with PVAc-OH
(run 2), it is likely [23] that the polymer formed by the coupling of
P(AN-r-BVE)-b-PCHO polymeric cations with PVAc-OH, as can
be seen in Scheme 1 (i.e., the formation of a graft polymer).1 The graft
efficiency for the graft polymer was estimated to be 85% by
W1/(W1þW2), where W1 and W2 are the weights of grafts and the
PVAc backbone, respectively.

3.2. Characterization of graft polymers before and after hydrolysis

The PVAc-g-[P(AN-r-BVE)-b-PCHO] graft polymer was hydro-
lyzed with NaOH to obtain a poly(vinyl alcohol)-based amphiphilic
graft polymer (PVA-g-[P(AN-r-BVE)-b-PCHO]). Both the graft
polymers were fully characterized by 1H NMR, IR, GPC and DSC. 1H
NMR, IR and GPC data are shown in Figs. 1s–3s in Supporting
information, respectively.

Table 2 lists glass transition temperatures (Tg or Tg1, and Tg2) and
melting points (Tm) for the polymers determined by DSC
measurements. In the case of PVAc-g-[P(AN-r-BVE)-b-PCHO] graft
polymer, two glass transitions were observed at 26 and 43 �C (Tg1

and Tg2, respectively). Comparing with the Tg values for P(AN-r-
1 Polymers obtained by radical/cation transformation polymerization usually
contain homopolymers of cationic polymerizable monomers because of chain
transfer after radical/cation transformation. In the case of the synthesis of the graft
polymer, the graft polymer was purified by careful fractionation (see Section 2).
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Fig. 3. AFM tapping topographic image and aggregation scheme of the hydrolyzed graft polymers of PVA-g-(PAN-r-PBVE-b-PCHO) and the DLS results of graft copolymers before
and after hydrolysis.
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BVE)-b-PCHO and PVAc-OH (34 and 39 �C, respectively), it is likely
that Tg1 and Tg2 correspond to glass transitions for the P(AN-r-BVE)-
b-PCHO grafts and the PVAc backbone, respectively. Tg1 for PVAc-g-
[P(AN-r-BVE)-b-PCHO] graft polymer is slightly lower than Tg for
P(AN-r-BVE)-b-PCHO presumably because propagation of PCHO
was disturbed by the coupling reaction with PVAc-OH and the
average molar mass of P(AN-r-BVE)-b-PCHO grafts was lower than
that for P(AN-r-BVE)-b-PCHO obtained in the absence of PVAc-OH
(run 1 in Table 1), whereas Tg2 for PVAc-g-[P(AN-r-BVE)-b-PCHO]
graft polymer is slightly higher than Tg for PVAc-OH, indicating that
the movement of the PVAc backbone is somehow restricted by the
P(AN-r-BVE)-b-PCHO grafts. It should be noted here that the DSC
result for PVAc-g-[P(AN-r-BVE)-b-PCHO] graft polymer is different
from that for blend of P(AN-r-BVE)-b-PCHO and PVAc-OH, in which
both the polymers undergo glass transition at almost the same
temperature (34 and 39 �C).

In the case of PVA-g-[P(AN-r-BVE)-b-PCHO] graft polymer, two
glass transitions were observed at 37 and 94 �C (Tg1 and Tg2,
respectively). As temperature was further increased, melting was
observed at 179 �C (Tm). Comparing with the Tg1, Tg2 and Tm values
for a blend of P(AN-r-BVE)-b-PCHO and PVA (36, 76 and 228 �C,
respectively), it is likely that Tg1 and Tg2 correspond to glass tran-
sitions for the P(AN-r-BVE)-b-PCHO grafts and the PVA backbone,
respectively, and that Tm corresponds to the melting of the PVA
backbone. Tg1 and Tg2 for PVAc-g-[P(AN-r-BVE)-b-PCHO] graft
polymer are higher than those for the blend of P(AN-r-BVE)-b-
PCHO and PVA, indicating that the movements of the P(AN-r-BVE)-
b-PCHO grafts and the PVA backbone are restricted by each other.
On the other hand, Tms for PVAc-g-[P(AN-r-BVE)-b-PCHO] graft
polymer are lower than those for the blend of P(AN-r-BVE)-b-PCHO
and PVA, indicating that the P(AN-r-BVE)-b-PCHO graft decreases
Tm for the PVA backbone.

3.3. AFM and DLS for the amphiphilic graft polymer

Since the hydrolyzed graft polymer, PVA-g-[P(AN-r-BVE)-b-
PCHO], is amphiphilic, aggregates formed from the polymer in
a selective solvent were characterized by AFM and DLS. AFM of
Fig. 3 (left) demonstrates an example of AFM images for the
aggregates formed from PVA-g-[P(AN-r-BVE)-b-PCHO] graft poly-
mer in a mixed solvent of DMSO/THF (1/5, v/v). This figure shows
a number of ellipsoidal objects of 56 nm height, 160 nm length and
80 nm width. DLS of Fig. 3 (right) indicates hydrodynamic radius
(RH) distributions for hydrolyzed and non-hydrolyzed graft poly-
mers, i.e., PVA-g-[P(AN-r-BVE)-b-PCHO] and PVAc-g-[P(AN-r-BVE)-
b-PCHO], measured in a mixed solvent of DMSO/THF (1/5, v/v). The
average value of RH for PVA-g-[P(AN-r-BVE)-b-PCHO] was
determined to be 116 nm, which agreed well with the size of
aggregates in the AFM image. On the other hand, the average value
of RH for PVAc-g-[P(AN-r-BVE)-b-PCHO] graft polymer was also
determined to be 26 nm, corresponding to molecularly dispersed
polymer chains. The aggregation of PVA-g-[P(AN-r-BVE)-b-PCHO]
in the DMSO/THF mixed solvent may be driven by strong hydrogen
bonding interaction of hydroxyl groups on the PVA backbone.

4. Conclusions

In summary, a simple method for synthesis of graft polymers
was developed. A graft polymer, PVAc-g-[P(AN-r-BVE)-b-PCHO])
was synthesized successfully by ‘‘one-step’’ radical/cationic trans-
formation polymerization of a mixture of AN/BVE/CHO and in situ
coupling of P(AN-r-BVE)-b-PCHO grafts with PVAc-OH backbone. A
PVA-based amphiphilic graft polymer, PVA-g-[P(AN-r-BVE)-b-
PCHO]), was also synthesized by alkali hydrolysis of PVAc-g-[P(AN-
r-BVE)-b-PCHO]). AFM and DLS measurements confirmed the
formation of aggregates from the amphiphilic graft polymer. These
results demonstrate that the radical/cationic transformation poly-
merization may supply a simple and promising approach to the
synthesis of graft polymers.
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